skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dall’Olmo, Giorgio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> The azimuthal anisotropy of particles associated with jets (jet particles) at midrapidity is measured for the first time in p-Pb and Pb-Pb collisions at$$ \sqrt{{\textrm{s}}_{\textrm{NN}}} $$ s NN = 5.02 TeV down to transverse momentum (pT) of 0.5 GeV/cand 2 GeV/c, respectively, with ALICE. The results obtained in p-Pb collisions are based on a novel three-particle correlation technique. The azimuthal anisotropy coefficientv2in high-multiplicity p-Pb collisions is positive, with a significance reaching 6.8σat lowpT, and its magnitude is smaller than in semicentral Pb-Pb collisions. In contrast to the measurements in Pb-Pb collisions, thev2coefficient is also found independent ofpTwithin uncertainties. Comparisons with the inclusive charged-particlev2and with AMPT calculations are discussed. The predictions suggest that parton interactions play an important role in generating a non-zero jet-particlev2in p-Pb collisions, even though they overestimate the reported measurement. These observations shed new insights on the understanding of the origin of the collective behaviour of jet particles in small systems such as p-Pb collisions, and provide significant stringent new constraints to models. 
    more » « less
  2. Abstract The ALICE experiment was proposed in 1993, to study strongly-interacting matter at extreme energy densities and temperatures. This proposal entailed a comprehensive investigation of nuclear collisions at the LHC. Its physics programme initially focused on the determination of the properties of the quark–gluon plasma (QGP), a deconfined state of quarks and gluons, created in such collisions. The ALICE physics programme has been extended to cover a broader ensemble of observables related to Quantum Chromodynamics (QCD), the theory of strong interactions. The experiment has studied Pb–Pb, Xe–Xe, p–Pb and pp collisions in the multi-TeV centre of mass energy range, during the Run 1–2 data-taking periods at the LHC (2009–2018). The aim of this review is to summarise the key ALICE physics results in this endeavor, and to discuss their implications on the current understanding of the macroscopic and microscopic properties of strongly-interacting matter at the highest temperatures reached in the laboratory. It will review the latest findings on the properties of the QGP created by heavy-ion collisions at LHC energies, and describe the surprising QGP-like effects in pp and p–Pb collisions. Measurements of few-body QCD interactions, and their impact in unraveling the structure of hadrons and hadronic interactions, will be discussed. ALICE results relevant for physics topics outside the realm of QCD will also be touched upon. Finally, prospects for future measurements with the ALICE detector in the context of its planned upgrades will also be briefly described. 
    more » « less
  3. Recent measurements of charm-baryon production in hadronic collisions have questioned the universality of charm-quark fragmentation across different collision systems. In this work the fragmentation of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal jet momentum fraction carried by Λ c + baryons, z ch , in hadronic collisions. The results are obtained in proton-proton ( p p ) collisions at s = 13 TeV at the LHC, with Λ c + baryons and charged (track-based) jets reconstructed in the transverse momentum intervals of 3 p T Λ c + < 15 GeV / c and 7 p T jet ch < 15 GeV / c , respectively. The z ch distribution is compared to a measurement of D 0 -tagged charged jets in p p collisions as well as to 8 simulations. The data hints that the fragmentation of charm quarks into charm baryons is softer with respect to charm mesons, in the measured kinematic interval, as predicted by hadronization models which include color correlations beyond leading-color in the string formation. © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
  4. The production of the ψ ( 2 S ) charmonium state was measured with ALICE in Pb-Pb collisions at s NN = 5.02 TeV , in the dimuon decay channel. A significant signal was observed for the first time at LHC energies down to zero transverse momentum, at forward rapidity ( 2.5 < y < 4 ). The measurement of the ratio of the inclusive production cross sections of the ψ ( 2 S ) and J / ψ resonances is reported as a function of the centrality of the collisions and of transverse momentum, in the region p T < 12 GeV / c . The results are compared with the corresponding measurements in p p collisions, by forming the double ratio [ σ ψ ( 2 S ) / σ J / ψ ] Pb Pb / [ σ ψ ( 2 S ) / σ J / ψ ] p p . It is found that in Pb-Pb collisions the ψ ( 2 S ) is suppressed by a factor of 2 with respect to the J / ψ . The ψ ( 2 S ) nuclear modification factor R AA was also obtained as a function of both centrality and p T . The results show that the ψ ( 2 S ) resonance yield is strongly suppressed in Pb-Pb collisions, by a factor of up to 3 with respect to p p . Comparisons of cross section ratios with previous Super Proton Synchrotron findings by the NA50 experiment and of R AA with higher- p T results at LHC energy are also reported. These results and the corresponding comparisons with calculations of transport and statistical models address questions on the presence and properties of charmonium states in the quark-gluon plasma formed in nuclear collisions at the LHC. © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
  5. A<sc>bstract</sc> The fractions of non-prompt (i.e. originating from beauty-hadron decays) D0and D+mesons with respect to the inclusive yield are measured as a function of the charged-particle multiplicity in proton-proton collisions at a centre-of-mass energy of$$ \sqrt{s} $$ s = 13 TeV with the ALICE detector at the LHC. The results are reported in intervals of transverse momentum (pT) and integrated in the range 1< pT<24 GeV/c. The fraction of non-prompt D0and D+mesons is found to increase slightly as a function ofpTin all the measured multiplicity intervals, while no significant dependence on the charged-particle multiplicity is observed. In order to investigate the production and hadronisation mechanisms of charm and beauty quarks, the results are compared to PYTHIA 8 as well as EPOS 3 and EPOS 4 Monte Carlo simulations, and to calculations based on the colour glass condensate including three-pomeron fusion. 
    more » « less
  6. Abstract The azimuthal ($$\Delta \varphi $$ Δ φ ) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p–Pb collisions at$$\sqrt{s_{\mathrm{{NN}}}} = 5.02$$ s NN = 5.02 TeV. Results are reported for electrons with transverse momentum$$4<16$$ 4 < p T < 16 $$\textrm{GeV}/c$$ GeV / c  and pseudorapidity$$|\eta |<0.6$$ | η | < 0.6 . The associated charged particles are selected with transverse momentum$$1<7$$ 1 < p T < 7 $$\textrm{GeV}/c$$ GeV / c , and relative pseudorapidity separation with the leading electron$$|\Delta \eta | < 1$$ | Δ η | < 1 . The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near- and away-side peaks, respectively. The results from p–Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The$$\Delta \varphi $$ Δ φ distribution and the peak observables in pp and p–Pb collisions are compared with calculations from various Monte Carlo event generators. 
    more » « less